
The BANDANA Framework v2.0
User’s Manual

Dave de Jonge

February 10, 2023

1

Contents
1 Introduction 4

2 Before You Begin 4

3 Running a Tournament 5
3.1 How it Works . 7

4 Setting Up Your Own Tournament 7

5 Building Your Own Agent 9
5.1 The Game Class . 9
5.2 The Power Class . 10
5.3 The Province Class . 10
5.4 The Region Class . 10
5.5 The Order Class . 11
5.6 Compiling Your Agent . 11

6 Negotiations 12
6.1 The Negotiation Protocol . 12
6.2 Deals You Can Propose . 13
6.3 The RandomNegotiator . 14

6.3.1 Connecting to the Negotiation Server . 14
6.3.2 Negotiating . 15
6.3.3 Checking Confirmed Deals Are Still Valid . 16

6.4 Rejecting Proposals . 16
6.5 Searching for Profitable Deals . 16
6.6 Obeying the Confirmed Deals . 17
6.7 Inconsistent Deals . 17
6.8 Sending Informal Messages . 18

7 Building a Negotiating Algorithm on top of the D-Brane’s Tactical Module 18

8 Adapting the Scoring System 19
8.1 Changing the Order of Importance of the Score Calculators 19
8.2 Calculating Scores for Groups of Agents . 20
8.3 Implementing Your Own ScoreCalculator . 22

9 Useful Tools 24
9.1 The Internal Adjudicator . 24
9.2 The BandanaGameBuilder . 25
9.3 Setting a Preferred Power for your Agent . 26
9.4 The Diplomacy Mapper . 26
9.5 Loading Tournament Data . 26
9.6 The Parlance Game Server . 26

9.6.1 Step 1: Download and Install Python . 26
9.6.2 Step 2: Download and Install Parlance . 27
9.6.3 Step 3: Running Parlance . 27

2

10 Some Final Comments 27
10.1 Proposing Draws . 27
10.2 Play Diplomacy Online . 28
10.3 Contact . 28

3

1 Introduction
BANDANA is a Java framework for the development of automated agents that play the game of Diplo-
macy. This tutorial explains how to implement your own Diplomacy-playing, negotiating agents, and
how to let them play against each other in a Diplomacy tournament. BANDANA is an extension of
the DipGame framework. However, it provides a new game server, a new negotiation server and uses a
simplified negotiation language. The source code is made publicly available at:
https://gitlab.iiia.csic.es/davedejonge/bandana

For this tutorial we will assume you are familiar with the Java programming language and with the
rules of Diplomacy. If not, you can find the rules here:
https://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf.

Changes w.r.t Version 1.3

• BANDANA now comes with its very own game server, so you no longer need to use the Parlance
server.

• The Scoring system has been updated, which now allows you to keep the score of a group of agents,
rather than just for individual agents.

• BANDANA now follows the modular Java structure that was introduced in Java 9.
• The classes Region, Power, and Province now correctly override hashcode() so they can be used

safely as the key in a HashMap or a HashSet.
• DiplomacyGameBuilder has been renamed to BandanaGameBuilder.

2 Before You Begin
To run a game of Diplomacy, you need to run a game server and 7 agents that will be the players.
Optionally, you may also run a negotiation server, if you want the agents to be able to negotiate, and
you can run one or more so-called observers, which are agents that observe the game, but do not play.
Observers are useful to collect or display information about ongoing games.

Step 1: download the BANDANA framework

As you had probably already figured out, the BANDANA framework can be downloaded from:
https://www.iiia.csic.es/~davedejonge/bandana.

Download the zip file called Bandana Framework 2.0 and unzip it. Inside the unzipped folder you
will find a folder named Bandana_Example_Project. This project contains a number of examples how
to implement a Diplomacy bot, as well as a number of examples that demonstrate how you can setup
a tournament. Furthermore, it contains a subfolder named libs with all the libraries that this project
depends on (including the bandana-2.0 library), a subfolder named game server that contains the new
Bandana Game Server, and a subfolder named agents with a number of example agents that you can use
for your experiments, including all agents that participated in the ANAC Diplomacy Leagues of 2017,
2018, and 2019.

Step 2: Create a New Project

Next you need to create a new project in your favorite IDE and import the files that you downloaded
in Step 1. We will here explain how to do this in Eclipse, but you may use any other IDE as well. We
have used Eclipse version 2020-12 (4.18.0), but of course it could be slightly different if you are using a
different version.

4

https://gitlab.iiia.csic.es/davedejonge/bandana
https://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf
https://www.iiia.csic.es/~davedejonge/bandana

1. Create a new Java project in Eclipse, by clicking File –> New –> Java Project. Choose a name for
the project, and click Finish.

2. In the package explorer, right-click on the project folder and select ’import’.
3. Select General / File System and click Next.
4. Click on the button ’Browse’ next to the field ’From directory’.
5. Navigate to the folder that you downloaded.
6. Click on the folder called BANDANA_Example_Project and click ’Select Folder’.
7. Select the check box that appears next to BANDANA_Example_Project so that everything in the

folder is selected.
8. Click Finish.

Next you have to make sure that all the libraries are properly referenced. This goes as follows:

1. In the Package Explorer, right-click on the project, and select properties from the pop-up menu.
2. In the window that appears, in the menu on the left, Select Java Build Path.
3. Click on the tab Libraries.
4. Inside the tab, click on Modulepath.
5. Click on Add Jars...
6. Open the project folder and expand the libs folder.
7. Select all the .jar files that appear.
8. Click on ’OK’ and then click on ’Apply and Close’.
9. Open the file module-info.java and make sure it contains the following line:

requires es.csic.iiia.bandana;

10. If everything is okay you will see the project in the package explorer without any errors.

3 Running a Tournament
If everything went well, then you are now ready to run a tournament your first Diplomacy tournament.
You can do this by simply running the ExampleTournament1 class. In Eclipse you can do this by right-
clicking on ExampleTournament1.java in the Package Explorer and then selecting ’Run As’ and then
clicking ’Java Application’. This will start a tournament of 3 games, each with the following agents:
D-BraneExampleBot, RandomNegotiator, DumbBot, Saitama, Gunma, and two instances of D-Brane.
Run this tournament, and wait until it has finished.

Once you start the tournament you should see a window appearing like in Figure 1, that displays
information from the TournamentObserver. The upper part of this window shows the progress of the
current game. Specifically, the first line displays which game of the tournament is currently running.
For example, if we are running a tournament consisting of 3 games then during the first game it will
display: Game: 1/3. The second line shows the current phase and year of the current game. Next, it
displays the names of the 7 players, and the name of each player is followed by the power it plays and
the number of Supply Centers it currently owns. Note that for some agents it does not display a name,
but only a question mark. The reason for this is that the Tournament Observer learns their names from
the Negotiation Server. The Parlance game server does not disclose the names of the connected players
until the end of the game, so during the game the Tournament Observer can only know the names of
the agents that are connected to the Negotiation Server. The agents indicated with a question mark are
agents that do not negotiate (see Section 6 for more information about this).

In the bottom part of the window you see a table that displays the tournament standings so far.
During the first game of the tournament it will be empty, but from the second game onward it will show
the overall scores of each player over the previous games. It displays 4 different score values for each
player, namely the following:

5

Figure 1: The window of the Tournament Observer

• Solo Victories: how many times it won the game by a solo victory (owned 18 Supply Centers or
more).

• Supply Centers: how many Supply Centers it conquered in total (the number of Supply Centers it
owned at the end of a game, summed over all games).

• Points: a player receives 0 points if it gets eliminated, 12 points for each solo victory, 6 points for
each 2-player draw, 4 points for each 3-player draw, 3 points for a 4-player draw, 2 points for a
5-player or 6-player draw and 1 point for a 7-player draw.

• Average Rank: the average over all ranks it obtained in each game. A player obtains rank 1 in
a game if it scored the highest number of Supply Centers, rank 2 if it scored the second highest
number of Supply Centers, etcetera. If two players both end with 0 Supply Centers the players
are ranked according to who was eliminated last. If two players rank equally they both receive the
average of the two ranks.

The players are sorted in this table according to the number of solo victories. The player with the highest
number of solo victories is displayed at the top of the table. If two or more players have an equal number
of solo victories they are ranked according to who conquered the most Supply Centers. If they still rank
equal the tie is broken by the number of points, and finally they are ordered according to their average
rank (the player with the lowest average game rank, is the better one). In Section 8 we will explain how
you can change the order of importance of these scoring methods and how you can even implement your
own scoring method. Note that for the first three of these scoring methods the table displays the total
value, followed by the average value between parentheses, while for the last one it only shows the average
value.

When the tournament is finished, you should see that a new folder has appeared inside the log
folder in your project. The name of this new folder is the date and time at which the tournament
was started. Inside that folder you will find a number of other folders, one for each player, one for the
Tournament Observer, one for the game server and one for the negotiation server. To see the results of the
tournament, open the folder called Tournament Observer, and then open the text files gameResults.log
and tournamentResults.log. The first of these two files shows the results of each individual game. For
each game it displays for each player which power it played and how many supply centers it scored. If a
player got eliminated before the end of the game, then it will show the year of elimination, rather than
the number of supply centers. The second file shows the overall results of the tournament. For each

6

agent it shows how many games it played, and how much it scored according to each of the four scoring
methods that were also displayed in the Tournament Observer.

Furthermore, for each player you will find a log folder inside the main log folder which in turn contains
one folder for each game played. Each of these folders contains one or two log files. The first log file
has a file name starting with dip_. This file is created by the DipGame framework and stores the
communication between the player and the game server. The other log file is created by the player itself
and has the name of the Power played as its file name. Note, however, that not all players create such a
log file.

3.1 How it Works

As you can see in the ExampleTournament1 class, the tournament is run by calling the runTournament()
method. Starting the tournament is done in four steps:

1. First, the BANDANA game server is started as an external process. In order to play a game each
player must connect to this server. The players make their moves by submitting them to the server,
and then the server will verify that the moves are legal, will determine the outcome of the moves,
and sends the results of each round back to the players.
The jar file of the BANDANA game server is located in the folder game server inside your project.
For convenience, this location is also stored in the variable BANDANA_GAME_SERVER in the class
named PATHS. So, if you change the location of the server, make sure you also change this variable.

2. Then, a Tournament Observer is created. The tournament observer is a neutral observer that
receives the information about the game from the game server and then displays it in a window so
you can follow the tournament. Furthermore, it calculates the scores for each players and logs the
results and scores in the gameResults.log and tournamentResults.log files.
The tournament observer also must connect to the game server, which is done inside the runGame()
method by calling the Tournament Observer’s connectToServer() method.

3. Next, The negotiation server is started. Note that this server is started as a thread, rather than
as an external process. The negotiation server is responsible for handling the proposals and the
acceptance-messages from the players. Only players that are capable of negotiating need to connect
to this server. Therefore, if none of the players are capable of negotiation, you do not need to start
a negotiation server at all.
Since starting a negotiation server is rather involved, we have put this code in a separate class called
NegoServerRunner which you can find in your project.

4. Finally, we can start the actual tournament. This is done by calling the method runGame(), once
for every game to be played. Inside this method you can see that a game is started by notifying
the negotiation server that a new game is about to be started, then starting seven players (each of
these will be started as an external process) and making the tournament observer (re-)connect to
the game server.

4 Setting Up Your Own Tournament
In this section we explain how to create and run your own custom tournament.

The easiest parameters to change are the number of games to play, the deadlines for the various
types of phases, and the year after which a draw is declared. These parameters appear at the top of
the ExampleTournament1 class and you are free to set them to any positive integer you like (although
FINAL_YEAR should obviously be at least 1901, because each game starts in that year). If you do not
want the game server to declare a draw automatically you can just set FINAL_YEAR to some very high
level, like 1 million. However, it is strongly advised that you do use set it to a reasonable value, because

7

games sometimes tend to end up in a stalemate in which no player makes any more progress and then
the game can continue forever.

It is probably more interesting, however, to change the agents that take part in the tournament. To
change this, go to the method runGame(). Here, you see that each player is started by a call to the
startAgent() method, which is called with the path to the jar file of that agent and a name that you
want to give to that agent. In principle you can give any name to any agent, but it is convenient to just
keep the same name as the jar file. The only thing that is important is that in any given game, each
player has a different name. If two or more players try to connect to the game server in the same game
and with the same name, then only the first one will connect successfully.

The Example Project that you downloaded already comes with a number of agents that you can use,
which are stored in the agents folder. For convenience, we have stored the paths to the jar files of those
agents in the class Paths. So, if, for example, you want to run the agent Gunma instead of Oslo_A, just
replace the line

startAgent(Paths.OSLO_A, "Oslo_A", tournamentLogFolderPath, gameNumber);

by the line

startAgent(Paths.Gunma, "Gunma", tournamentLogFolderPath, gameNumber);

Note that, although each game must have exactly seven players, a tournament may involve more than
seven players. However, in that case you have to rewrite some of the code in TournamentExample1 to
make sure that not every game starts with the same seven players. Also, you have to make sure you pass
the total number of participants in the tournament to the constructor of the Tournament Observer.

As you can see in the startAgent() method, each agent is started with the following command line
arguments:

java -jar [location] -log [logPath] -name [name]

Here, [location] is the location where the .jar file of the agent is stored, [logPath] is the path to the folder
where you want its log files to be stored, and [name] is the name of each agent.

Although not displayed here, most of these agents also allow you to set the port on the game server
to which it will connect, and the port on the negotiation server to which it will connect (if the agent is
capable of negotiation), with the flags -gamePort and -negoPort respectively (see for example the source
code of the DBraneExampleBot which you can find in your project).

Furthermore, most agents also have the option to set a final year, after which the agent will always
propose a draw, using the flag -fy. Before the introduction of the BANDANA game server, this feature
was useful because it allowed you to prevent a game from going on forever. However, with the BANDANA
game server this is no longer necessary, since you can now set the final year on the game server so a draw
will be automatically declared by the server, without the players having to propose a draw. On the other
hand, if for some reason you do not want to use the BANDANA game server, and prefer to use the
DAIDE server or the Parlance server, then this option can still be useful.

Please keep in mind that while these command line options apply to the example agents that we have
included with the BANDANA framework, any agent developed by anyone else may require completely
different command line arguments, so you may have to adapt the implementation of runAgent() to be
able to run such agents.

If you want to write some code to analyze the results of the tournament you can use the following
line after the tournament has finished:

ArrayList<GameResult> results = tournamentObserver.getGameResults();

It returns a list that contains one GameResult object for each game of the tournament, which represents
the results of that game. It provides methods to get the names of the players in that game, the number

8

of Supply Centers owned by each player at the end of the game, the rank of each player, the year of
elimination of a player (if it got eliminated) and, in case of a Solo Victory, the name of the winner.

Finally, we would like to remark that if you stop the tournament before it has finished, then server
and the players may continue running. In that case you may need to kill that process manually via the
TaskManager (in Windows) before you can start a new tournament. You may also need to manually kill
the players in that case.

Exercises

1. Run a new tournament with the following agents:

• 2 instances of BackstabAgent
• 2 instances of MasterMind
• 3 instances of Frigate

Let them play 10 games, and make sure they declare a draw after the year 1910. Set the deadlines
to 10 seconds for each type of phase.

2. After the tournament has finished, open the tournamentResults.log file. Which player scored the
most Supply Centers?

5 Building Your Own Agent
Now that you have managed to set up the framework and have a tournament running, it is time to start
writing your own agent. In order to do this you need to create a Java class that extends the Player class
which is defined in the DipGame framework.

As an example, we will take a look at the source code of the RandomBot, which is provided with the
example project. This player provides the bare minimum of a Diplomacy-playing agent. It makes only
random moves and does not negotiate. We will look at negotiating agents in the following sections.

The agent contains a main method which creates a new object of the RandomBot class and then
creates a communicator object which is needed to establish the connection between the agent and the
game server. The agent is then started by calling randomBot.start(icomm), which will connect to the
game server. Unfortunately, this connection sometimes fails, in which case a CommException is thrown.
Therefore, we have placed this code in a loop, so that it will try to connect a couple of times.

Once the agent is connected to the game server, the DipGame framework will call the method init()
of the Player class, which is overridden by the RandomBot. Also, the DipGame framwork sets the me
field of the Player class. This field represents the power that the server has assigned to the agent.

Once 7 players have connected to the server, the method start() will automatically be called, which
you can implement to do any stuff you want to happen at the start of the game. From now own you
can access the game field which represents the current state of the game (see section below: ‘The Game
Class’).

The most important method inherited from the Player class is the play() method. This method is
called at the beginning of each new phase and must return a list of orders, containing exactly one order
for each of the player’s units.

5.1 The Game Class

The Player class has a field called game of class Game. This object is updated every round and can be
used to obtain all information about the current state of the game. Through this object you can for
example obtain the the current year, the current phase, and the positions of all the units on the map.
Furthermore, through this object you can get a list of all provinces, and for each province it stores which

9

power currently controls that province and which power is the owner of that province (A power ‘controls’
a province if it currently has a unit in that province. A power becomes the ‘owner’ a province if it controls
the province after a fall phase and remains the owner until another power becomes the owner of that
province).

5.2 The Power Class

The 7 ‘great powers’ of the Diplomacy game are each represented by an object of class Power. You
can obtain a Power object by calling game.getPower(name); where name is a string which is the three-
letter acronym of that power. For example, to get the Power object representing England, you call:
game.getPower("ENG");. To get a list of all provinces, you can call: game.getPowers().

5.3 The Province Class

As you know, the map of Diplomacy is divided into provinces. These provinces are represented in
DipGame by Province objects. You can get a Province object by calling game.getProvince(name);
where name is a string which is the three-letter acronym of that province. For example, to get the
Province object representing Holland, you call: game.getProvince("HOL");. To determine whether a
certain province is a Supply Center or not the Province class provides the method isSC(). To get a list
of all provinces, you can call: game.getProvinces().

The following code demonstrates how you can obtain the current owner and the current controller of
a province:

Province holland = game.getProvince("HOL");
Power ownerOfHolland = game.getOwner(holland);
Power controllerOfHolland = game.getController(holland);

The other way around, to obtain all supply centers currently owned by a given power, or the list of
home supply centers (the supply centers where that power can build new units) you can do the following:

Power england = game.getPower("ENG");
List<Province> supplyCentersOwnedByEngland = england.getOwnedSCs();
List<Province> homeSupplyCentersOfEngland = england.getHomes();

Also, you can use england.isOwning("HOL"); to check if a given power currently owns a given supply
center.

5.4 The Region Class

Each province in DipGame contains one or more Regions. There are two types of regions: army-regions
and fleet-regions and we can distinguish three kinds of provinces:

• A Sea Province is a Province that contains exactly one fleet-region and no army-regions.
• An Inland Province is a Province that contains exactly one army-region and no fleet regions.
• A Coastal Province is a Province that contains exactly one army-region and one or two fleet-

regions.

When a unit is located in a Province, then it is in fact located in one of its Regions. Clearly, if the unit
is an army then it must be located in the army-region of that province, and if it is a fleet then it must
be located in any of its fleet-regions.

For a given province you can get its regions by calling its getRegions() method:

Province holland = game.getProvince("HOL");
List<Region> regionsOfHolland = holland.getRegions();

10

Also, you can get a specific region from the game object by calling game.getRegion(name), where name is
the six-letter acronym of the region. For example, to get the army-region of Holland: game.getRegion("HOLAMY").

We should remark that in DipGame there is no special class to define the players’ units. Instead, a
unit is simply represented by a Region object, corresponding to the region where that unit is located. To
know where the units of any power are located, the agent can call the method getControlledRegions()
on a Power object. For example:

Power austria = game.getPower("AUS");
List<Region> unitsOfAustria = austria.getControlledRegions();

5.5 The Order Class

In every SPR and FAL phase of the game you must give an order to each of your units. This is done by
creating a list of Order objects which must be returned by the play() method.

For example, suppose you want to move an army in Holland to Belgium. Then you must create an
object of type MTOOrder (move-to order):

Region location = game.getRegions("HOLAMY");
Region destination = game.getRegions("BELAMY");
Order order = new MTOOrder(me, location, destination);

If, however, you want the army in Holland to stay where it is, you must create a HLDOrder (hold order):

Region location = game.getRegions("HOLAMY");
Order order = new HLDOrder(me, location);

If you want your fleet in the North Sea to support your army in Holland to move to Belgium, you can
do this as follows:

//Order the army in Holland to move to Belgium
Region location1 = game.getRegions("HOLAMY");
Region destination1 = game.getRegions("BELAMY");
Order order1 = new MTOOrder(me, location1, destination1);

//Order the fleet in the North Sea to support the previous order.
Region location2 = game.getRegions("NTHFLT");
Order order2 = new SUPMTOOrder(me, location2, order1);

If you want to support a unit to hold you must create an object of type SUPOrder rather than
SUPMTOOrder.

For more information about the types of Orders you can create for AUT, SUM and WIN phases,
please take a look at the source code of RandomBot.

Unfortunately, the current version of DipGame does not provide any class for Convoy orders. There-
fore, it is not possible for an agent implemented on the DipGame framework (or the BANDANA frame-
work) to use convoys.

5.6 Compiling Your Agent

One you have implemented your agent, in order to run it, you have to compile it into a jar file.
In Eclipse, before you can do this, you first have to create a ‘run configuration’ for your agent. This

ensures that the Java run-time knows where to find the main() function to start the agent. You only
need to do this the first time that you are compiling your agent. The next time you can skip this step.
This works as follows:

11

• Right-click on the file with the source code of your agent (e.g. MyFirstBot.java).
• Click ‘Run As’
• Click ‘Run configurations...’
• A pop-up window will appear. In the top-left of this window, click ’New launch configuration’.
• Make sure that the ‘main’ tab now shows the name of your project and the main class of your agent

(the class that contains the main() method). These should be filled out automatically, so normally
you don’t have to do anything. Just check that they are correct, and if not, adapt them manually.

• Finally, click ‘Close’.

Now that your agent has a run configuration, you can compile it into a runnable jar file. In Eclipse, this
works as follows:

• Right-click on the project that contains the code of your agent.
• Click on ‘export’
• Select ‘Runnable jar file’ and click ‘next’.
• In the pop-up window that appears, there is a drop-down list labeled ‘run configuration’. From

this, select the run configuration corresponding to your agent. If your agent is called MyFirstBot
and your project is called MyFirstProject, then you should select the configuration with name
MyFirstBot - MyFirstProject. If you cannot find this configuration in the list, click ‘Cancel’ and
create a new run configuration, as described above. Then try again.

• Under ‘export destination’ select the path where you want to store your new agent. For example
"agents/MyFirstBot.jar".

• Click ‘Finish’.

The new jar file should now appear in the destination folder. Remember that, whenever you make a
change to your agent, you first have to compile it again before you can run your updated agent.

Exercises

1. Make a copy of RandomBot in your project and give it a proper name, such as MyFirstBot.
2. Adapt your bot such that at the beginning of the game it prints out a list of names of all the

provinces, and for each province a list of names of all its regions.
3. Let’s make your bot a bit more intelligent and a bit less random. Therefore, adapt it such that:

• If it has a unit inside a Supply Center, which it currently does not own, then make sure that
it holds.

• Otherwise, if a unit is in a province adjacent to a Supply Center which it does not own, make
sure it moves there.

4. Adapt your agent such that, whenever two of its units want to move to the same province, instead,
one unit will give support to the other.

5. Run a tournament to see if your new agent is better than the original RandomBot. To do this, make
sure that both the original RandomBot and your new agent are compiled into jar-files. Make sure
the jar files are stored in the agents folder (optionally, you may also want to add their paths to the
Paths class). Then, adapt the code of the TournamentExample1 to run a tournament with these
agents.

6 Negotiations

6.1 The Negotiation Protocol

BANDANA provides a default multilateral negotiation protocol. The protocol can be changed, but we
will not go into that in this tutorial. Unlike the common Alternating Offers Protocol, in our protocol

12

agents do not take turns. This means that any agent is allowed to make any proposal or accept any
proposal whenever it wants.

The protocol involves a special agent, which we call the Notary agent (or sometimes the Protocol
Manager), which monitors the negotiations. The Notary is started automatically when the negotiation
server is started. If an agent has made a proposal and all other agents that are involved in the proposal
have accepted that proposal then the Notary agent will send a ‘confirm’ message to all agents involved in
the proposal. This message should be considered the official confirmation that the agreement has become
binding.

If your agent has accepted a proposal, but later changes its mind, it can send a reject message to
withdraw from the proposal and hence prevent it from becoming confirmed. However, if this is done after
the Notary has already sent a confirm message for that proposal, then your agent is too late. The reject
message will be ignored, and your agent is still committed to the agreement.

Even though we say that proposals are ‘officially’ confirmed by the Notary, it is important to remark
that there is no mechanism to control that players indeed obey the agreements they make. Therefore,
one should always take into account that some players break their promises and when implementing an
agent it is recommended to keep track of which players have broken their promises, so you can make sure
your agent will no longer negotiate with them.

6.2 Deals You Can Propose

The BANDANA framework allows you to propose deals that specify the following two components:

• A (possibly empty) set of Order Commitments
• A (possibly empty) set of Demilitarized Zones.

Definition 1. An Order Commitment oc is a tuple: oc = (y, φ, o), where y is a ‘year’ (an integer
number higher than 1900), and φ is a phase i.e. φ ∈ {Spring, Summer, Fall, Autumn,Winter} and o is
any legal order.

An order commitment is a promise that a power will submit a certain order during a certain phase
and year. For example: "The army in Holland will move to Belgium in the Spring of 1902". However,
if the order is a HLDOrder, then the corresponding power is still allowed to submit a SUPOrder or
SUPMTOOrder for that unit instead of the HLDOrder.

Definition 2. A Demilitarized Zone dmz is a tuple: dmz = (y, φ,A,B) with y and φ as above, A a
nonempty set of Powers:

A ⊂ {Austria,England, France,Germany, Italy,Russia, Turkey}

and B a nonempty set of Provinces.

A Demilitarized Zone consists of a phase, a year, a set of Powers and a set of Provinces, with the inter-
pretation that none of these Powers is allowed to enter (or stay inside) any of these Provinces during that
phase and year. For example the Demilitarized Zone (1903, Fall, {FRA,GER,ENG}, {NTH,ECH})
has the interpretation "In the Fall of 1903 FRA, GER, and ENG will not enter the North Sea and will
not enter the English Channel".

Definition 3. A Deal d is a set:

d = {oc1, . . . ocn, dmz1, . . . dmzm}

where each oci is an Order Commitment, each dmzi is a Demilitarized Zone, and with n ≥ 0, m ≥ 0,
and d 6= ∅.

13

When a deal is confirmed by the Notary, the interpretation is that all powers involved in the deal
agree that all Order Commitments in the deal and all Demilitarized Zones in the deal will be respected.

A proposed deal can only be accepted or rejected in its entirety. It is not possible to only accept part
of the deal. In the case you wish to accept only a part of the deal, you simply need to propose a new
deal which only consists of those Order Commitments and Demilitarized Zones you wish to include in it.
For example, if Austria proposes a deal d = {oc1, oc2} to Germany, then Germany can choose to either
accept d or to reject d, but cannot choose to only accept {oc1}. Instead however, Germany can decide to
make a new proposal d′ = {oc1} to Austria, so then it is up to Austria to determine whether to accept
or reject d′.

Deals in the BANDANA framework are represented by objects of the BasicDeal class, which imple-
ments the abstract Deal class. Currently, BasicDeal is the only implementation of Deal but in the future
we may allow different kinds of deals than the ones described above. Also, we may in the future allow
users to define their own Deal classes so that you can use the BANDANA framework without being bound
to the specific type of deal described above.

6.3 The RandomNegotiator

As you have seen, the BANDANA framework comes with an agent called RandomNegotiator. The source
code is included in the example project. This agent is just the RandomBot extended with negotiation
capabilities. We will now take a look at how it works.

Note that, apart from adding negotiating capabilities, we have also added some other functionality,
such as a logger for debugging. Furthermore, we have added two important fields:

DiplomacyNegoClient negoClient;
ArrayList<BasicDeal> confirmedDeals = new ArrayList<BasicDeal>();

The negoClient field is the client that will connect to the negotiation server. This field is essential if
you want your agent to negotiate via the BANDANA negotiation server. The second field is a list that
we will use to store the deals that have been confirmed by the Notary.

6.3.1 Connecting to the Negotiation Server

In order to negotiate we need to connect to the negotiation server, which is done in the init() method
of the RandomNegotiator:

this.negoClient.connect();
this.negoClient.waitTillReady();
if(this.negoClient.getStatus() == STATUS.READY){

//successfully connected to the server.
...

}else{
//connection failed.
...

}

The first method establishes a connection with the negotiation server in a separate thread. The second
method lets the current thread hang until either the connection is established, or the connection has failed.
With the if-else statement we can check whether the client has connected to the server successfully. It is
not possible to connect to the negotiation server before the init() method is called. This is because the
negotiation client needs to know which Power you are playing and this information is only available once
the init() method is called.

14

6.3.2 Negotiating

The play() method of the RandomNegotiator is identical to the play() method of the RandomBot,
except that we have added a call to a negotiate() method for SPR and FAL seasons. The Random-
Negotiator does not negotiate during the other seasons, but you can implement your own agent to do
so.

The negotiate() method contains a loop that runs for a couple of seconds, and which consists of two
parts. The first part handles incoming messages, while the second part searches for proposals to make.

When we have received a message, we can check what type of message it is by calling
receivedMessage.getPerformative(). If the message is a proposal, then we can extract the proposed
deal from that message using the following line:

DiplomacyProposal receivedProposal = (DiplomacyProposal)receivedMessage.getContent();

We can then analyze the proposal and determine whether we want to accept it or not. You can then get
the orders and Demilitarized Zones of the deal as follows:

BasicDeal deal = (BasicDeal)receivedProposal.getProposedDeal();
List<DMZ> dmzs = deal.getDemilitarizedZones();
for(DMZ dmz : dmzs){

List<Power> powers = dmz.getPowers();
List<Province> provinces = dmz.getProvinces();
//TODO: decide if we like this DMZ or not.

}
for(OrderCommitment orderCommitment : deal.getOrderCommitments()){

Order order = orderCommitment.getOrder();
//TODO: decide if we like these orders.

}

Note however, that in the RandomNegotiator we have added some extra code in these loops to check that
the Demilitarized Zones and Order Commitments are not outdated. With this we mean for example an
Order Commitment that proposes to make a certain move during Spring 1902, while the game is already in
the Fall 1902 phase, so it cannot be obeyed any more. This may for example happen because the message
has arrived too late, or simply because there is some other agent that makes senseless proposals. It does
not make sense to accept such a proposal, so we can ignore it. For this purpose we have implemented the
isHistory() method that returns true if and only if the specified year and phase lie in the past with
respect to the current year and phase of the game. Note that since the proposal must be accepted in its
entirety the whole proposal becomes senseless even if only one of its Order Commitments or Demilitarized
Zones is outdated.

Each proposal automatically gets an ID assigned to it when it is proposed. You need this ID to accept
the proposal, which is done by the following line:

this.negoClient.acceptProposal(receivedProposal.getId());

The RandomNegotiator simply accepts the proposal with a probability of 50% regardless of the contents
of the proposal.

You can call receivedProposal.getParticipants() to get a list of names of all powers that are
involved in the deal. All these powers need to accept the deal before it becomes confirmed.

When the RandomNegotiator receives a confirm message it means that it is committed to fulfil its
part of the confirmed proposal. Therefore it stores the confirmed deal in a list:

confirmedDeals.add(confirmedProposal.getProposedDeal());

This way, once it must decide its moves to make, it can access the confirmed deals and make sure that
the orders it chooses are consistent with the confirmed deals.

15

6.3.3 Checking Confirmed Deals Are Still Valid

Note that at the beginning of the play() method we have included some code to check that previously
confirmed deals are still valid. A deal is invalid if it includes an order for a unit that is no longer possible
to execute, because the game evolved in a way different than expected.

We can illustrate this with the following example:

1. AUS plans to move his unit in Holland into Belgium during the SPR 1902 phase.
2. AUS agrees with GER that it will use that same unit in the following FAL 1902 phase to give

support from Belgium to some unit of GER.
3. However, if during the SPR 1902 phase the unit in Holland fails to move to Belgium (e.g. because

it is blocked by FRA), then in the next phase AUS cannot give the promised support.

In that case we say the agreement has become invalid and no longer needs to be obeyed. We check
whether a confirmed deal is still valid by calling
Utilities.testValidity(game, confirmedDeal).
If this method returns null it means the deal is still valid and must be obeyed. If it returns a String
however, it means that it is no longer valid, so we can ignore it. The returned String is a description of
why the deal is invalid. This may be useful for debugging purposses.

6.4 Rejecting Proposals

You can reject an incoming proposal by calling

this.negoClient.rejectProposal(proposal.getID());

There are three reasons why you may wish to reject a proposal.
The first is simply to communicate to the other agents that you are not interested in a proposal that

you received. Note that if this is the case it is not required to send a REJECT message. Instead, you
may also choose to simply ignore the proposal. However, it may be helpful for your allies if you explicitly
reject it.

Another case where you may wish to send a REJECT message is when you first make a proposal,
or accept an incoming proposal, but then later change your mind. If the Notary receives your REJECT
message before all other agents involved in the deal have accepted it you prevent the deal from becoming
confirmed. If you send this message to late however, and the deal has already been confirmed by the
Notary, then there is nothing you can do anymore. The deal has definitively become a binding agreement.

The third case in which you may want to send a REJECT message is when you have made two or
more inconsistent proposals and one of them becomes confirmed. In that case you should reject the other
proposals, because otherwise they may also become confirmed and you will not be able to obey them all.

Note however, that normally this third case is not relevant, because the Notary already checks consis-
tency and only confirms deals that are consistent with earlier confirmed deals (see Section "Inconsistent
Deals"). Therefore, this third case is only relevant if you have disabled the Notary’s consistency checking
mechanism.

6.5 Searching for Profitable Deals

Finding good deals to propose is probably the hardest task when implementing a negotiating Diplomacy
player. The RandomNegotiator however simply generates a random deal (in the method generateRandomDeal())
and proposes it. A deal is proposed by calling negoClient.proposeDeal(newDealToPropose);

16

6.6 Obeying the Confirmed Deals

As explained, when all players involved in a proposed deal accept the proposal, and none of them has
rejected it after accepting it, then the Notary sends a ‘CONFIRM’ message to all players involved in the
deal. From this moment the deal is considered official, so all involved players are expected to obey the
agreement (although we can never be sure that they really will).

In general, whenever another player accepts a proposal in which you are also involved, you receive an
ACCEPT message. However, when all but one of the involved players have already accepted it, and the
last player finally also accepts it, then the Notary will send a CONFIRM message. You will not receive
the last ACCEPT message, but instead you will just receive the CONFIRM message.

We have adapted the method generateRandomMoveOrders() to make sure that it only generates
orders that are consistent with its confirmed agreements. That is, we have added some code that collects
all provinces we are not allowed to enter during the current phase, and all orders that we are committed
to. Then, when generating orders, we make sure that we do not generate any orders for units that are
already committed to an order, and that the orders we do generate do not move into any demilitarized
province. Note, however, that we have not adapted the methods generateRandomBuildOrders(),
generateRandomRetreatOrders() and generateRandomRemoveOrders() to obey confirmed deals. We
leave this as an exercise.

Furthermore, if a deal has OrderCommitments and/or Demilitarized Zones for more than one round
of the game, and one player did not obey his part of the agreement in the first round of the agreement,
then you may also want to ignore your part of that agreement for the future rounds. For example:

1. AUS and GER agree that AUS will move his unit from Bohemia to Galicia in the Spring of 1904,
and that GER will move his unit from Tyrolia to Venice in the Fall of 1904.

2. In Spring 1904, AUS does not obey this agreement. He moves his unit from Bohemia to Munich.
3. In Fal 1904, GER may now also decide not to obey his part of the agreement and instead move his

unit from Tyrolia to Trieste.

In order to check whether the other players have obeyed their agreements the Player class provides the
receivedOrder() method. This method is automatically called after the players have submitted their
moves, and is called once for each order submitted by any other player.

6.7 Inconsistent Deals

Agents may make several proposals that are inconsistent with each other. For example, in one deal it
proposes that its army in Belgium will move to Holland, while in in another deal it proposes that that
its army in Belgium will move to Picardy.

Proposing inconsistent deals in not a problem. However, once all agents involved in a proposed deal
have accepted it, before sending a CONFIRM message, the Notary will check that this deal is consistent
will proposals that have been confirmed earlier and are still valid. If this is not the case the Notary
will simply not send a CONFIRM message for this new deal and the deal is not considered a binding
agreement. Therefore, you can always be sure that the proposals that have been confirmed by the Notary
are all consistent with each other.

If you want to set up a tournament in which the Notary does not not check whether deals are consistent
or not then you can do that by adding the following line

NegoServerRunner.ENABLE_CONSISTENCY_CHECKING = false;

before the line

NegoServerRunner.run();

17

6.8 Sending Informal Messages

Apart from proposing, accepting and rejecting deals, the BANDANA also allows you to send informal
messages.

An informal message can simply be anything. The content is completely ignored by the Notary, and
therefore has no formal meaning. You can use this if you want to allow any kind of communication
between the players other than the formal negotiation protocol.

We have put an example of such a message in the start() method of the RandomNegotiator:

List<Power> receivers = game.getPowers();
this.negoClient.sendInformalMessage(receivers, "Hello World! I am " + me.getName());

If you want to set up a tournament in which you do not want the players to use informal messages you
can disable this possibility by including the line

NegoServerRunner.ALLOW_INFORMAL_MESSAGES = false;

before the line

NegoServerRunner.run();

Exercises

1. The RandomNegotiator randomly chooses to accept a proposal or not. Instead, change the code
such that it will always accept any proposal that contains an order for one of its own units to move
to a Supply Center it currently does not own.

2. Instead of randomly proposing deals, make it try to find a deal in which one its own units moves
into a Supply Center, and one of its opponents’ units supports that move.

7 Building a Negotiating Algorithm on top of the D-Brane’s Tactical
Module

Arguably the most important contribution of the BANDANA framework is the ability to build your own
negotiation algorithm on top of the existing tactical module of D-Brane. This allows you to do research
on Negotiations without having to worry about the underlying tactical aspects of the game. D-Brane
is a high-quality Diplomacy player that has won the Computer Diplomacy Challenge at the 2015 ICGA
Computer Olympiad.

In order to demonstrate how this works we have added the DBraneExampleBot to the example project,
of which you can find the source code in the folder src/ddejonge/bandana/exampleAgents.

Note that this class looks very similar to the RandomNegotiatior. However, we have added a field
called dBraneTactics. Whenever you pass a list of deals to this object, it will try to find the best list
of orders for units. Of course there is no guarantee that the returned list is the theoretically best set of
orders, but in general it will be very good. It is used as follows:

Plan plan = dbraneTactics.determineBestPlan(game, power, commitments, allies);
List<Order> myOrdersToSubmit = plan.getMyOrders()

Here, game is simply the game object that represents the current state of the game. The given power
is the Power for which you want to obtain the set of moves. Normally you would pass the power that
you play, but you can also pass any other power, for example if you want to predict what your coalition

18

partners might do given these agreements. The argument ‘commitments’ can be any list of BasicDeal
objects, and ‘allies’ is a list of powers that you consider your allies.

The Plan object that is returned contains a list of orders for the given power, such that they all obey
the given commitments and such that none of its units will invade any Supply Center currently owned
by any of the given allies. The idea here is that this list of orders is the set of deals that maximizes the
number of Supply Centers you conquer in that round. In other words: it is a greedy player that does not
think ahead more than one step at a time. Although this may seem a very naive strategy, it turns out
to play better than most other existing Diplomacy bots. You can get the number of Supply Centers the
DBraneTactics object expects to conquer by calling:

int numberOfConqueredSCs = plan.getValue();

We should note however that this is only an expected number. There is no guarantee that this number is
correct (although usually it should at least be a correct lower bound, assuming all agents obey the given
commitments).

In the play() method of the DBraneExample bot we demonstrate how the DBraneTactics ob-
ject can be used after the negotiations to get the best plan that obeys the made agreements. How-
ever, it can also be used by the negotiation algorithm itself. This is demonstrated in the method
searchForNewDealToPropose(). In this method we first determine what happens if we do not make
any new agreements, by asking DBraneTactics for the best plan under the already confirmed agreements.
Next, we generate a number of random deals, and for each such deal we ask DBraneTactics what would
be the best plan if that random deal were also confirmed. We finally return the random deal for which
the returned plan gives us the highest expected number of conquered Supply Centers (unless this number
is not higher than if we make no new deal at all, in which case we return null).

Of course, the number of conquered Supply Centers in the current round is only a very rough indication
of the quality of the deal, so instead you may want to write a more sophisticated algorithm to determine
its quality, using the list of orders returned by plan.getMyOrders()

8 Adapting the Scoring System
Above we have explained that the Tournament Observer calculates four types of scores for the players
and we have explained how it uses these scores to rank the players. In this section we explain how you
can change this behavior and implement your own scoring system.

8.1 Changing the Order of Importance of the Score Calculators

Note that the source code of the ExampleTournament1 contains the following lines:

ArrayList<ScoreCalculator> scoreCalculators = new ArrayList<ScoreCalculator>();
scoreCalculators.add(new SoloVictoryCalculator());
scoreCalculators.add(new SupplyCenterCalculator());
scoreCalculators.add(new PointsCalculator());
scoreCalculators.add(new RankCalculator());

The list of Score Calculators created here is passed on to the constructor of the Tournament Observer.
The order in which the Score Calculators are added to this list determines their order of importance.

Suppose, for example, that you are not interested in the number of solo victories or the number of
points. Instead, you want the players to be scored according to their average rank, and you want to use
the number of supply centers as a tie breaker in case two agents score the same average rank. You can
then simply replace the above 5 lines by the following 3 lines:

ArrayList<ScoreCalculator> scoreCalculators = new ArrayList<ScoreCalculator>();

19

scoreCalculators.add(new RankCalculator());
scoreCalculators.add(new SupplyCenterCalculator());

Now the TournamentObserver and the tournamentResults log file will no longer show the number of
solo victories or the number of points. They will order the players firstly based on their average ranks
(because the RankCalculator was added first to the list) and will use the number of Supply Centers as
the tie breaker (because the SupplyCenterCalculator was added second to the list). You can add as
many Score Calculators to this list as you like (but minimally one) and you can add them in any order
you like.

8.2 Calculating Scores for Groups of Agents

A new feature in BANDANA 2.0, is that we now also allow you to calculate a score for a group of agents,
rather than only for individual agents. This is especially useful when you run a tournament with multiple
instances of the same agent and you are only interested in the total score of that agent.

The use of this feature is demonstrated in ExampleTournament2. In this example, we have two agents:
D-Brane and Gunma that we want to compare to each other. So, we let three instances of D-Brane play
against 3 instances of Gunma. Furthermore, we add agent Saitama to the field, just to make sure we
have seven players. In order to compare D-Brane with Gunma, we have to create two Team objects, which
contain the names of the D-Branes and the names of the Gunmas respectively:

List<Team> teams = new ArrayList<Team>();

Team teamDBrane = new Team("Team D-Brane", "D-Brane 1", "D-Brane 2", "D-Brane 3");
teams.add(teamDBrane);

Team teamGunma = new Team("Team Gunma", "Gunma 1", "Gunma 2", "Gunma 3");
teams.add(teamGunma);

TournamentObserver tournamentObserver
= new TournamentObserver(logFolder, teams, scoreCalculators, numberOfGames, 7);

The first argument of the constructor of the Team class is the name of the team, which can be anything
you like. The following arguments are the names of the members of the team, which have to be exactly
the same as the names the respective agents use to connect to the game server.

If we pass the list containing these teams to the constructor of the Tournament Observer then its
window will display the total results for each team, rather than for each individual agent. Note that
since we did not add Saitama to any team, the results of Saitama will not be shown by the Tournament
Observer. Similarly, a single player name may appear in more than one team. The points it scores will
then simply be added to the total scores of all the teams it is part of. Make sure, however, that you do
not add the same player name twice to the same Team object.

We may need to stress here, that the fact that some agents are together in a team has nothing
to do with the question if those agents will be cooperating with each other or not. If two
agents are in the same team it just means that the Tournament Observer will add their scores together.
It is perfectly possible, however, that those players will consider each other as enemies and will try to
eliminate each other. Similarly, a player of one team could be cooperating with a player from another
team. In fact, the players will not even be aware that they have been put in a certain team.

If you are not interested in team scores, and just want to keep scores of individual players, then you
do not need to create any teams and you can just use the Tournament Observer constructor which does
not accept a list of Teams as argument (which is what we did in TournamentExample1). In that case the
Tournament Observer will automatically create one Team object for every agent and give that team the
same name as the agent.

20

One useful tool is the static method Team.generateTeams(). If you pass a list of names to this
method, then it will create a list of teams for you that contains exactly one team for each of the names
in the list, with each team containing just one agent. For example, the following code:

List<Team> teams = Team.generateTeams("D-BraneExampleBot", "RandomNegotiator",
"DumbBot", "Saitama", "Oslo_A"));

teams.add(new Team("D-Brane", "D-Brane 1", "D-brane 2"));

yields exactly the same list of teams as the following:

List<Team> teams = new ArrayList<>();
teams.add(new Team("D-BraneExampleBot", "D-BraneExampleBot"));
teams.add(new Team("RandomNegotiator", "RandomNegotiator"));
teams.add(new Team("DumbBot", "DumbBot"));
teams.add(new Team("Saitama", "Saitama"));
teams.add(new Team("Oslo_A", "Oslo_A"));
teams.add(new Team("D-Brane", "D-Brane 1", "D-brane 2"));

Another useful feature, is that you can also instantiate a Team object with power names, rather than
player names. This may be useful when you are playing with seven identical agents and you are interested
in how well they play as certain powers. For example:

Team westEurope = new Team("Western Europe", "ENG", "FRA", "GER", "ITA");

Make sure, however, that you do not mix player names and power names in one Team object.
Although in principle you are free to give any name to your teams or your players, there are a number

of rules you should obey:

• Do not give any of the players the name of a power (e.g. do not give the name "FRA" to any of the
players), because then the Tournament Observer would not know how to distinguish between the
player and the power. That is, do not do this:

startAgent(Paths.DBRANE, "FRA", tournamentLogFolderPath, gameNumber);

• When constructing a team, you can either pass player names or power names to the constructor,
but you should not mix them. For example, the following two lines are okay:

Team westEurope = new Team("Western Europe", "ENG", "FRA", "GER", "ITA");
Team teamDBrane = new Team("Team D-Brane", "D-Brane 1", "D-Brane 2", "D-Brane 3");

but the following is not okay:

Team mixed = new Team("Mixed", "ENG", "FRA", "D-Brane 1", "D-Brane 2");

• The names of your teams should be distinct from the names of your agents. The only exception
to this rule is when a team contains exactly one agent. In that case it is okay if the team has the
same name as the unique player in this team (because there cannot be any confusion between the
player and the team). In other words, the following is okay:

Team teamDBrane = new Team("D-Brane", "D-Brane");

but the following is not:

Team teamDBrane = new Team("D-Brane", "D-Brane", "D-Brane 2");

21

Note that for the first two of these rules, BANDANA does not check if you obey them or not. Therefore,
it is your own responsibility to make sure they are properly obeyed. If you do not obey them, then we
cannot guarantee that the Tournament Observer calculates the scores correctly.

Exercises

1. Repeat the tournament of Exercise 1 of Section 4, but this time, make sure you create three teams;
one team containing the two instances of BackstabAgent, one team containing the two instances of
MasterMind, and one team containing the three instances of Frigate.

2. After the tournament has finished, open the tournamentResults.log file. Which team scored the
most Supply Centers?

8.3 Implementing Your Own ScoreCalculator

If you are not satisfied with any of the four scoring systems supplied with the BANDANA framework
you can also implement your own Score Calculator. The way to implement your ScoreCalculator has
changed since BANDANA 1.3 so if you had already implemented your own ScoreCalculators you may
have to re-implement them. The main difference is that the ScoreCalculators now assign points to teams
rather than individual agents. Note, however, that a team may just consist of one agent, and if you
do not create any teams at all, such as in ExampleTournament1, then the Tournament Observer will
automatically create one team for each agent.

As an example, let us suppose that you want to run a tournament in which a team receives 100 points
for every game in which it conquers 10 or more Supply Centers, and 0 points for all other games. In
order to do so, you can create a new class that extends the abstract class ScoreCalculator. Let us call
this class MyScoreExample. You then need to implement the following four methods:

• calculateGameScore(GameResult newResult, String teamName)
• getTournamentScore(String teamName)
• getScoreSystemName()
• getScoreString(String teamName)

The calculateGameScore() method is called by the Tournament Observer, once for every team, at the
end of each game. You can use this to update the ScoreCalculator’s score for the given team using the
GameResult object that is passed to it. Below, we show how to implement it for our example.

Note that the ScoreCalculator base class provides a method getTeamMembers() which allows you
to obtain the names of the agents in the team. Furthermore, it contains a list of type List<Double> for
each team, which you can obtain by calling the method getScoreList(). This list is used to store the
team’s scores that you calculated for each game.

public void calculateGameScore(GameResult newResult, String teamName) {

//Get the names of the members in the given team.
List<String> teamMemberNames = this.getTeamMembers(teamName);

//Calculate the total number of supply centers conquered by the given team in the game that
has just finished.

int numSupplyCentersConquered = 0;
for(String teamMember : teamMemberNames){

numSupplyCentersConquered += newResult.getNumSupplyCenters(teamMember);
}

//Get the list that contains the scores of all previous games for the this team.
List<Double> scores = this.getScoreList(teamName);

22

//calculate the score for the current team (0 or 100) and add it to the score list of this
team.

if(numSupplyCentersConquered >= 10){
scores.add(100);

}else{
scores.add(0);

}
}

The method getTournamentScore() should return the actual overall score of any given team. The
Tournament Observer uses the value returned by this method to sort the teams in its window and in the
tournamentResults log file. In most cases you would want this method to return the total or the average
of the scores that are stored in the team’s score list. Bandana provides a class called Statistics with
static methods that you can use to calculate the sum, average, standard deviation, and standard error of
the score list.

public double getTournamentScore(String teamName) {

//return the average of all scores in this team’s score list.
List<Double> scores = this.getScoreList(teamName);
return Statistics.getAverage(scores);

}

In some cases, however, you may want this method to return something more complicated than just the
average score. For example, you may want it to return the highest value obtained in any of the games,
or the average over the 10 highest values obtained. In such cases you will need to write your own code
to calculate this.

The method getScoreSystemName() is used to display the name of the scoring system in the top of
the table in the window of the Tournament Observer. We can simply let it return the String "MyScore-
Example".

public String getScoreSystemName() {
return "MyScoreExample";

}

The method getScoreString() determines how the teams’s score will be displayed in the table and
in the log file. A typical implementation would look like the following:

public String getScoreString(String teamName) {

List<Double> scores = this.getScoreList(teamName);

//Calculate the total, average, and standard error of the scores,
// and convert them into Strings with 3 decimals.
String total = Utils.round(Statistics.getSum(scores), 3);
String average = Utils.round(Statistics.getAverage(scores), 3);
String stdErr = Utils.round(Statistics.getStandardError(scores), 3);

String scoreString = "#tot (av. = #av +/- #stderr)";

scoreString = scoreString.replace("#tot", total);
scoreString = scoreString.replace("#av", average);
scoreString = scoreString.replace("#stderr", stdErr);

23

return scoreString;
}

This returns a String consisting of the total score obtained by the team, followed, between parentheses,
by the average and the standard error, all rounded off to 3 decimals.

Note that, in principle, the String returned by this method can be anything and does not need to be
related to the score of the player at all, but then the Tournament Observer and the tournament results
log file would not show any interesting information.

Finally, we need to add a constructor to our example:

public MyScoreExample() {
super(true);

}

The boolean value true passed on to the super constructor indicates that a higher score is to be interpreted
as a better result. This would be correct in most cases, but for example the RankCalculator is an
exception. The RankCalculator passes false to its super constructor, because a lower rank represents
a better result.

Exercises

1. Implement a score system based on the number of conquered supply centers, but in which the score
of Russia is multiplied by 3

4 (because Russia starts with 4 units, while all other powers start with
3 units).

2. Implement a score system based on the number of conquered supply centers, but in which the
supply centers conquered in the last 3 games count double.

3. Run a tournament in which the players are ranked according to their score returned by the Score
Calculator you implemented for Exercise 1, while the Score Calculator of Exercise 2 is used as a tie
breaker.

9 Useful Tools
In this section we describe some tools that may come in handy when implementing your own Diplomacy
bot.

9.1 The Internal Adjudicator

When implementing an agent you may encounter the problem that you would like to know for a given
game configuration, a given set of orders for your units, and a given set of orders for the units for your
opponents, what the outcome of those orders will be. The process of determining the outcome of a set
of orders is known as adjudication. Unfortunately, this task is far from trivial, as the rules of Diplomacy
are fairly complex.

Luckily however, we have added an adjudicator for you to the BANDANA framework. It works in a
very simple way. First you create an object of the InternalAdjudicator class. Then, every time you
wish to use it, you call its clear() method to reset it, then you call clear(game, listOfOrders) to
execute the adjudication process. After that, you can call getResult(order) for each order. This will
return true if the order succeeded, and false if the order failed.

More precisely, if a MTOOrder succeeds, it means that the unit will indeed move to the intended
province. If it fails it will either stay in the same place, or it is dislodged (it is kicked out of its current
location by an opponent, and will have to retreat in the next SUM or AUT phase). For a HLDOrder, if
it succeeds it will stay in its current location, and will be dislodged if it fails.

24

For a SUPOrder or SUPMTOOrder if it succeeds it will stay in its current location. However, if it
fails it may or may not be dislodged. The fact that it failed means that it didn’t manage to give support
to the supported unit, because the support was cut. However, it does not tell you whether it successfully
managed to stay in its current location or if it was dislodged.

For failed SUPOrders, SUPMTOOrders and MTOOrders to know whether it was dislodged or not
you have to check whether there was some other unit that successfully moved into its location.

For an example of how to use the InternalAdjudicator, please take a look at the source code of the
AdjudicatorExampleBot that we have included in the BANDANA package. This agent is almost identical
to the RandomBot, except that in SPR and FAL phases it now generates a set of orders for all agents
instead of only for itself. It then uses the InternalAdjudicator to check how many supply centers it gains
if those orders are indeed submitted by the players. It repeats this process several times and finally picks
the set of orders that yields the highest numbers of Supply Centers and will play his moves from that
list (of course, there is no guarantee that this strategy works because the opponents will likely submit
completely different orders, but it just serves as an example of how the adjudicator works).

We should stress that the InternalAdjudicator does not check whether an order is legal or not. There-
fore, by itself it is not a fully functional adjudicator for a game server. It is only intended to be used
internally by a single agent (hence the name internal adjudicator). The agent itself is responsible for
checking that it does not supply this adjudicator with illegal moves (for example an army trying to move
into a sea-province, or a player submitting an order for a unit of an opponent).

9.2 The BandanaGameBuilder

Another useful tool is the BandanaGameBuilder (previously known as DiplomacyGameBuilder). This
tool allows you to generate a custom game, with units positioned on the map any way you like. This can
be very handy during the development of your agent when you want to test your algorithms on specific
test cases.

In the following example, we create game which is in the 1903 FAL phase, and with three units. We
place a Russian fleet in Sevastopol, a French fleet in the Spanish North Coast, and an Italian army in
Rome. Furthermore, we set England as the current owner of London. All other regions of the map will
remain empty, and all other Supply Centers will not have any owner. After placing the units and setting
the owners of the Supply Centers we create the Game object by calling buildGame().

BandanaGameBuilder gameBuilder = new BandanaGameBuilder();

gameBuilder.setPhase(Phase.FAL, 1903);

gameBuilder.placeUnit("RUS", "SEVFLT");
gameBuilder.placeUnit("FRA", "SPANCS");
gameBuilder.placeUnit("ITA", "ROMAMY");

gameBuilder.setOwner("ENG", "LON");

Game myGame = gameBuilder.buildGame();

If you want to create the standard board configuration, as it is at the beginning of any standard game,
you can simply do the following:

DiplomacyGameBuilder gameBuilder = new DiplomacyGameBuilder();
Game myGame = gameBuilder.createDefaultGame();.

Note: the game builder may fail if you try to add more than 34 units on the map. Also, it will fail if you
do not set the phase and year of the game.

25

9.3 Setting a Preferred Power for your Agent

When debugging your agent, or when running experiments, it may be useful to fix the power that your
agent is playing. To allow you to do that, the Player class contains a field named preferredPower. You
can set its value to the name of the power you want to play (in the constructor of your agent).

public MyFirstAgent(){
...
this.preferredPower = "TUR";
...

}

After connecting to the server the player will then send a message to the server to indicate its preference.
The BANDANA game server will indeed assign to each player its preferred power, unless there are
multiple players that each request to play the same player. This functionality is purely optional. The
field will by default be set to null and if you just want the server to assign arbitrary powers to your
agent, then just leave it null.

However, note that this functionality is specific to the BANDANA game server, so this will not work
on other game servers such as Parlance or DAIDE.

9.4 The Diplomacy Mapper

The Diplomacy Mapper is a tool that displays a visual representation of an ongoing game, so that you
can follow the game with your own eyes. Furthermore it even provides an interface for humans to play,
so you can play against your own agents.

This tool, however, is not part of BANDANA or DipGame, as it was developed by others. Nevertheless,
you can still use it perfectly in combination with BANDANA, and you can download it from here:
http://www.ellought.demon.co.uk/dipai/
Unfortunately, it only works on Windows.

9.5 Loading Tournament Data

When a tournament is running, the Tournament Observer stores the data of the tournament, as well as
the results of the finished game in a file called tournamentData.ser. When the tournament is finished,
or if it got interrupted, you can recover the data stored in this file. The Example Project contains a class
named TournamentLoaderExample that demonstrates how it can be used.

9.6 The Parlance Game Server

Previous versions of BANDANA did not include a game server, so you had to separately download and
install one of the following two game servers:

• The DAIDE Game Server (Windows only)
• Parlance (platform-independent)

This is no longer necessary. However, if you are for some reason you are not happy with the BANDANA
game server, you can still use one of these two alternatives. We here explain how you can download and
install the Parlance server.

9.6.1 Step 1: Download and Install Python

Since Parlance is implemented in Python, you first need to make sure that Python is installed. Don’t
worry if you are not familiar with Python. No knowledge of Python is required to use Parlance. Python

26

http://www.ellought.demon.co.uk/dipai/

can be downloaded here:
https://www.python.org/downloads/.
We have had some problems running Parlance on Python 3.4, therefore, we recommend to install Python
2.7 instead. Once you have installed Python, make sure that ‘python’ is added to your path variable.
For information on how to do that (on Windows), look for example here:
http://stackoverflow.com/questions/25153802/how-to-set-python-path-in-windows-7

9.6.2 Step 2: Download and Install Parlance

The next step is to download and install the Parlance game server. Proceed as follows:

1. Go to the following web page:
https://pypi.python.org/pypi/Parlance/1.4.1.

2. Download the file PARLANCE-1.4.1.tar.gz
3. Unzip it.
4. Open the terminal / command line.
5. Navigate to the unzipped folder.
6. Execute the following command:

>python setup.py install

If everything went okay there should be a folder called Scripts in your Python installation folder, which
contains an executable called parlance-server.exe (plus a number of other Parlance related files).

9.6.3 Step 3: Running Parlance

In order to run the Parlance game server, you can call the method ParlanceRunner.runParlanceServer()
in the ParlanceRunner class.

However, before doing so, make sure that the path to Parlance is set correctly in this class. Open the
file ParlanceRunner.java so you can adapt the two following two lines:

private static String PARLANCE_PATH = "C:\\Python27\\Scripts\\parlance-server.exe";
private static String HOME_FOLDER = "C:\\Users\\username";

Make sure that PARLANCE_PATH is correctly set to the location of the parlance-server executable (if
you installed Parlance on Windows then it is likely that the given path is already correct). Furthermore,
make sure that HOME_FOLDER is correctly set to the home folder of your user account on the computer
you are working on. Note that you can’t set this path to any folder you like. It must really be your home
folder. If this path is not set correctly Parlance will still work, but you will not be able to change the
deadlines of the game.

10 Some Final Comments

10.1 Proposing Draws

When your agent proposes a draw by calling the proposeDraw() method the proposal is sent via the
game server and not via the negotiation server. Therefore, your agent can propose draws even if it does
not have the negoClient field or if it is not connected to the negotiation server.

Furthermore, note that for this reason the protocol for draw proposals is a bit different from the
protocol described in Section 6.1. Specifically, once you have proposed a draw you cannot reject it
anymore. Also, when another player proposes a draw you are not notified of this, and you cannot decide
to accept or reject it. Instead, you simply decide to propose a draw whenever you want, and the server
declares a draw if and only if all players have proposed a draw in the same round.

27

https://www.python.org/downloads/
http://stackoverflow.com/questions/25153802/how-to-set-python-path-in-windows-7
https://pypi.python.org/pypi/Parlance/1.4.1

10.2 Play Diplomacy Online

No matter how well you understand the game theoretically, we think it is absolutely essential that you also
play the game a couple of times yourself before you will be able to implement a good player. An excellent
place to start playing Diplomacy is http://www.playdiplomacy.com/. Here you can play online with
people from all over the world.

10.3 Contact

If you still have any questions about Diplomacy, or BANDANA, please do not hesitate to contact us.
Also if you have any suggestions on how to improve the BANDANA framework or this manual, then we
are happy to hear from you. You can contact us by sending an e-mail to: davedejonge@iiia.csic.es

Acknowledgments
The BANDANA framework is an extension of the DipGame framework, which was implemented by
Angela Fabregues. The BANDANA Game Server was implemented by Victoria Fulford, Umut
Guler, and Ala Yasin. The implementation of the InternalAdjudicator (which is also used inside the
BANDANA game server) is based on the following article by Lucas Kruijswijk:
http://diplom.org/Zine/S2009M/Kruijswijk/DipMath_Chp1.htm .

28

http://www.playdiplomacy.com/
http://diplom.org/Zine/S2009M/Kruijswijk/DipMath_Chp1.htm

	Introduction
	Before You Begin
	Running a Tournament
	How it Works

	Setting Up Your Own Tournament
	Building Your Own Agent
	The Game Class
	The Power Class
	The Province Class
	The Region Class
	The Order Class
	Compiling Your Agent

	Negotiations
	The Negotiation Protocol
	Deals You Can Propose
	The RandomNegotiator
	Connecting to the Negotiation Server
	Negotiating
	Checking Confirmed Deals Are Still Valid

	Rejecting Proposals
	Searching for Profitable Deals
	Obeying the Confirmed Deals
	Inconsistent Deals
	Sending Informal Messages

	Building a Negotiating Algorithm on top of the D-Brane's Tactical Module
	Adapting the Scoring System
	Changing the Order of Importance of the Score Calculators
	Calculating Scores for Groups of Agents
	Implementing Your Own ScoreCalculator

	Useful Tools
	The Internal Adjudicator
	The BandanaGameBuilder
	Setting a Preferred Power for your Agent
	The Diplomacy Mapper
	Loading Tournament Data
	The Parlance Game Server
	Step 1: Download and Install Python
	Step 2: Download and Install Parlance
	Step 3: Running Parlance

	Some Final Comments
	Proposing Draws
	Play Diplomacy Online
	Contact

